Vectors in space (Part II)

Mixed product of three vectors

Mixed product is $(\vec{a} \times \vec{b}) \circ \vec{c}$. Usually marked with $\lfloor\vec{a}, \vec{b}, \vec{c} \mid$ So: $(\vec{a} \times \vec{b}) \circ \vec{c}=\mid \vec{a}, \vec{b}, \vec{c}\rfloor$
How it calculated?
If given vectors are: $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right), \vec{b}=\left(b_{1}, b_{2}, b_{3}\right)$ and $\vec{c}=\left(c_{1}, c_{2}, c_{3}\right)$ then:

$$
(\vec{a} \times \vec{b}) \circ \vec{c}=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

For what is it used?
i) Absolute value of mixed products three vectors is the same as the volume parallelepiped constructed over them, that is: $\vee(\vec{a}, \vec{b}, \vec{c})=|(\vec{a} \times \vec{b}) \circ \vec{c}|$

ii) Volume of the pyramid (tetrahedra) constructed over vectors a, b, c, is:

$$
V=\frac{1}{6}|(\vec{a} \times \vec{b}) \circ \vec{c}|
$$

Why $\frac{1}{6}$ in the formula?

Since that from earlier we know the volume of the pyramid is :

$$
V=\frac{1}{3} B H
$$

As the base is triangle, $B=\frac{1}{2}|\vec{a} \times \vec{b}|$ And then:

$$
V=\frac{1}{3} B H=\frac{1}{3} \frac{1}{2}|\vec{a} \times \vec{b}| H=\frac{1}{6}|(\vec{a} \times \vec{b}) \circ \vec{c}|
$$

How to find the height H of the pyramid?

$$
\frac{1}{6}|(\vec{a} \times \vec{b}) \circ \vec{c}|=\frac{1}{6}\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \text {, Then find the base } \mathrm{B}=\frac{1}{2}|\vec{a} \times \vec{b}| \text { and replace in } \mathrm{H}=\frac{3 V}{B}
$$

iii) Vectors lie in a plane

Vectors $\vec{a}, \vec{b}, \vec{c}$ lie in a plane if and only if their mixed product is equal to zero.

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=0
$$

Examples:

1. Calculate volume parallelepiped constructed over vectors: $\vec{a}(0,1,1), \vec{b}(1,0,1), \vec{c}(1,1,0)$

Solution:

$$
\vee(\vec{a}, \vec{b}, \vec{c})=|(\vec{a} \times \vec{b}) \circ \vec{c}|=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right|=
$$

$=|$| 0 | 1 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 1 | $0=(0+1+1)-(0+0+0)=2$ [see determinants] |
| 1 | 1 | 0 | 1 | 1 |

Therefore, $V=2$
2. Given vectors are vectors $\vec{a}(\ln (p-2),-2,6), \vec{b}(p,-2,5), \vec{c}(0,-1,3)$. Determine the real number p, for which vectors lie in a plane.

Solution:
As we said, must be $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=0$
$\left|\begin{array}{ccc}\ln (p-2) & -2 & 6 \\ p & -2 & 5 \\ 0 & -1 & 3\end{array}\right|=$ Develop is the first column $=\ln (\mathrm{p}-2)[-6+5]-\mathrm{p}[-6+6]=-\ln (\mathrm{p}-2)$
Must be $-\ln (P-2)=0 \quad$ [See file logarithms]
$p-2=1$, and $p=3$ is requested solution.
3. Given vectors are $\vec{a}(1,1,-1), \vec{b}(-2,-1,2), \vec{c}(1,-1,2)$,

Set apart vector \vec{c} in directions of vectors \vec{a}, \vec{b} and $\vec{a} \times \vec{b}$
Solution: First, we find $\vec{a} \times \vec{b}$.

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 1 & -1 \\
-2 & -1 & 2
\end{array}\right|=1 \dot{i}-0 \vec{j}+1 \vec{k}=(1,0,1)
$$

$\vec{c}=\mathrm{m} \vec{a}+\mathrm{n} \vec{b}+\mathrm{p}(\vec{a} \times \vec{b})$ where m, n and p are constants that must be found.
$(1,-1,2)=m(1,1,-1)+n(-2,-1,2)+p(1,0,1) \quad$ crossing in the system of equations:
$\left.\begin{array}{l}1=1 m-2 n+1 p \\ -1=1 m-1 n+0 p \\ 2=-1 m+2 n+1 p\end{array}\right\} \quad \begin{aligned} & m-2 n+p=1 \\ & m-n=-1 \\ & -m+2 n+p=2\end{aligned} \longleftrightarrow$ gather first and third \ldots and $p=\frac{3}{2}$

Return $\mathrm{p}=\frac{3}{2}$ in other two equations and obtain: $\mathrm{m}=-\frac{3}{2}$ and $\mathrm{n}=-\frac{1}{2}$
Let's go back now:

$$
\begin{aligned}
& \vec{c}=\mathrm{m} \vec{a}+\mathrm{n} \vec{b}+\mathrm{p}(\vec{a} \times \vec{b}) \\
& \vec{c}=-\frac{3}{2} \vec{a}-\frac{1}{2} \vec{b}+\frac{3}{2}(\vec{a} \times \vec{b}) \text { is the final solution }
\end{aligned}
$$

4. Given vectors are $\vec{a}(m-1,1,1), \vec{b}(-1, m+1,0), \vec{c}(m, 2,1)$. Determine the value of parameter \mathbf{m} so that vectors $\vec{a}, \vec{b}, \vec{c}$ lie in a plane and decompose \vec{a} in components by other two.

Solution:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=0$, it is $\left|\begin{array}{ccc}m-1 & 1 & 1 \\ -1 & m+1 & 0 \\ m & 2 & 1\end{array}\right|=0$ this determined develop by the third column $\ldots=$
$=-2-\mathrm{m}(\mathrm{m}+1)+(\mathrm{m}-1)(\mathrm{m}+1)+1=0$
$=-2 \not m^{2}-m y / m-\lambda+1=0 \quad$ So: $m=-2$
When to replace $m=-2$:

$$
\begin{aligned}
& \vec{a}=(-3,1,1) \\
& \vec{b}=(-1,-1,0) \\
& \vec{c}=(-2,2,1)
\end{aligned}
$$

Go to decompose :
$\vec{a}=\mathbf{m} \vec{b}+\mathbf{n} \vec{c}$
$(-3,1,1)=\mathbf{m}(-1,-1,0)+\mathbf{n}(-2,2,1) \quad$ crossing in the system of equations
$-3=-m-2 n$
$1=-m+2 n$
$1=0 \mathrm{~m}+\mathrm{n} \longrightarrow$ here is $\mathrm{n}=1$ and to change in above two equations... $\mathrm{m}=1$
So $\quad \vec{a}=\mathbf{m} \vec{b}+\mathbf{n} \vec{c}$ and $\vec{a}=\vec{b}+\vec{c}$ is final solution
5. We know that the vertices of a tetrahedron are $A(2,3,1), B(4.1,-2), C(6,3,7)$ and $D(-5,-4.8)$. Determine volume tetrahedra and height devolved from the vertice D on the ABC.

Solution:
First, we draw picture and post the problem:

Create vectors $\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}$

$$
\begin{aligned}
& \overrightarrow{A B}=(4-2,1-3,-2-1)=(2,-2,-3) \\
& \overrightarrow{A C}=(6-2,3-3,7-1)=(4,0,6) \\
& \overrightarrow{A D}=(-5-2,-4-3,8-1)=(-7,-7,7)
\end{aligned}
$$

Volume tetrahedra can be found by the formula: $\frac{1}{6}|(\vec{a} \times \vec{b}) \circ \vec{c}|=\quad \frac{1}{6}\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=$ $\frac{1}{6}\left|\begin{array}{ccc}2 & -2 & -3 \\ 4 & 0 & 6 \\ -7 & -7 & 7\end{array}\right|=\frac{308}{6}$

Still looking for area $\mathrm{ABC}: \mathrm{B}=\frac{1}{2}|\vec{a} \times \vec{b}|$

$$
\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & -2 & -3 \\
4 & 0 & 6
\end{array}\right|=-12 \dot{i}+24 \vec{j}+8 \vec{k}=(-12,24,8)
$$

$$
B=\frac{1}{2} \sqrt{(-12)^{2}+24^{2}+8^{2}}=14
$$

Use the $\mathrm{H}=\frac{3 V}{B}$.

$$
H=\frac{3 \frac{308}{6}}{14}=11 \text { Therefore, the required height is } H=11
$$

Note:

If you seek a different height, for example, from vertice C , is analogous.
Volume find, then area $\overrightarrow{A B} \times \overrightarrow{A D}$ and replace in $\mathrm{H}=\frac{3 V}{B}$.

